趣味の研究

趣味の数学を公開しています。初めての方はaboutをご覧ください。

The case of geometric Brownian motion

We think about the geometric Bownian motion with negative drift.

 

dX_t=(-\mu +\frac{\sigma^2}{2})X_tdt+\sigma X_t dW_t

Here, \mu is the drift of \log X_t

 

The ODE for g(x) is

\frac{\sigma^2}{2}\frac{d^2}{dx^2}(x^2g(x) )+(\mu-\frac{1}{2}\sigma^2)\frac{d}{dx}(xg(x) )+ikg(t)=-\delta(x-\xi)

 

This ODE is Euler equation, we solve the Green function in the same way of Sturm-Liouville equation.

Transform the equation like Sturm-Liouville equation .

r(x)\frac{d}{dx}(p(x)\frac{d}{dx}g(x))+q(x)=-\delta(x-\xi)

 

Here,

r(x)=\frac{\sigma^2}{2}x^{-1-\frac{2\mu}{\sigma^2}}

p(x)=x^{3+\frac{2\mu}{\sigma^2}}

 

When the right side equals 0, the independent solutions are x^{\lambda-1}.

Here, \lambda satisfies

\frac{\sigma^2}{2}\lambda^2+\mu\lambda+ik=0.

 

We define the solutions of this quadratic equation  as \alpha, \beta.

α<β.

 Define

y_1(x)=x^{\alpha-1}

y_2(x)=x^{\beta-1}

,

The boundary condition is 0 at x=b, and  coverges to 0 first enough at x=∞.

So the solution in in x<\xi  is

y_1(x)+cy_2(x)

Here, b^{-\alpha}+cb^{-\beta}=0.

The solution in x>\xi is

y_1(x)

Next, solve the Green function like the case of Sturm-Liouville equation .

The diffrence from Sturm-Liouville equation  is the factor r(x), then Green function in x<\xi is

-\frac{y_1(\xi)(y_1(x)+cy_2(x))}{A(\xi)}

the Green function in x>\xi is

-\frac{y_1(x)(y_1(\xi)+cy_2(\xi))}{A(\xi)}

A(\xi)=cp(\xi)r(\xi)(y'_1(\xi)y_2(\xi)-y_1(\xi)y'_2(\xi))

 

 Remark \alpha,\beta,c are dependent with "k".

Concretely A(x) is

A(\xi)=\frac{c\sigma^2}{2}\xi^2(\alpha-\beta)\xi^{\alpha+\beta-3}

\alpha+\beta=-\frac{2\mu}{\sigma^2}

so,

A(\xi)=\frac{c\sigma^2}{2}(\alpha-\beta)\xi^{-\frac{2\mu}{\sigma^2}-1}

The result is

in x<\xi g(x) is

g(x)=-\frac{2\xi^{-\beta}(x^{\beta-1}-x^{\alpha-1}b^{\beta-\alpha})}{\sigma^2(\alpha-\beta)}

 in x>\xi g(x) is

g(x)=-\frac{2x^{\alpha-1}(\xi^{-\alpha}-\xi^{-\beta}b^{\beta-\alpha})}{\sigma^2(\alpha-\beta)}

In the case of k=0, we derive the passage frequency at x starting from \xi.

When k=0 and b=1, 

\alpha=-\frac{2\mu}{\sigma^2}, \beta=0.

In x<\xi,

g(x)=\frac{1}{\mu}({x}^{-1}-{x}^{-\frac{2\mu}{\sigma^2}-1})

In x>\xi,

\frac{1}{\mu}({\frac{x}{\xi}})^{-\frac{2\mu}{\sigma^2}-1}( {\xi}^{-1}-{\xi}^{-\frac{2u}{\sigma^2}-1})

 

From this result, we can derive the maximum number starting from n<\xi.

By using bellow formula,

\int_{0}^{\infty}\exp(ikt)f(t)dt=- \frac{\sigma(b)^2}{2}\frac{dg(x)}{dx}|_{x=b}

Then, we solve the characteristic function of first passage time,

\int_{0}^{\infty}\exp(ikt)f(t)dt=\frac{\sigma^2}{2}\frac{y_1(\xi)(\alpha-\beta)}{A(\xi)}=(\frac{\xi}{b})^{-\beta}

Here,

\beta=\frac{-\mu+\sqrt{\mu^2-2\sigma^2ik}}{\sigma^2}