趣味の研究

趣味の数学を公開しています。初めての方はaboutをご覧ください。

Extension of Chebyshev Inequality

Theorem1

Let X \in \mathcal{R} be a random variable with expected value \mu and variable \sigma^2.

Let f(X) be a probability distribution function.

Let m(k) be m(k)=\sup_{|x-\mu|\geq k\sigma} f(x).

Then, for any r   r\in (\frac{1}{2},\infty) and k>0,

 Pr(|x-\mu|\geq k\sigma)\leq\frac{1}{k^2}{(\frac{2\sigma k^3}{2r-1}m(k) )}^{\frac{1}{r+1}}

r\rightarrow \infty,  inequality in continuous case coincides with Chebyshev inequality.

 

Theorem 2

Let X\in\mathcal{Z} be a random variable, p(X) be a probability mass function.

Let m be m=\sup_{\{\lfloor {x-\mu} \rfloor\geq k\sigma\}\cup\{\lceil {x-\mu} \rceil\leq -k\sigma\}} p(x).

Let \alpha=1+\frac{1}{12\sigma^2}

Then, for any r   r\in (\frac{1}{2},\infty) and k>0,

Pr(|x-\mu|\geq k\sigma)\leq\frac{\alpha}{k^2}{(\frac{2\sigma k^3}{(2r-1)\alpha}m(k) )}^{\frac{1}{r+1}}

 

Proof of Theorem 1

Consider the function

 F(k)=\int_{|x-\mu|\geq k\sigma}dx \frac{f(x)}{Pr_k}\frac{1}{|x-\mu|^{2r}}.

Here,

Pr_k=Pr(|x-\mu|\geq k\sigma)

 

 By definiton of m(k), F(k)\leq 2\frac{m(k)}{Pr_k}\int_{x-\mu\geq k\sigma} dx(x-\mu)^{-2r}=\frac{2m(k)}{(2r-1)Pr_k {(k\sigma)}^{2r-1}}          eq(1)

By deforming

F(k)=\int_{|x-\mu|\geq k\sigma}dx\frac{f(x)}{Pr_k}\frac{1}{|x-\mu|^{2r}}=\int_{(x-\mu)\geq k\sigma}dx\frac{f(x)+f(-x)}{Pr_k}\frac{1}{{(x-\mu)}^{2r}}         eq(2)

By definition of Pr, \int_{(x-\mu)\geq k\sigma}\frac{f(x) + f(-x)}{Pr_k}=1 , and

\frac{1}{x^r} is convex function for x\geq 0,  and \int_{(x-\mu) \geq k\sigma }dx (x-\mu)^2 \frac{f(x)+f(-x)}{Pr_k}\geq {(k\sigma)}^2.

We can apply Jesen's inequality for eq(2).

\int_{(x-\mu)\geq k\sigma}dx\frac{f(x)+f(-x)}{Pr_k}\frac{1}{(x-\mu)^{2r}}\geq\frac{1}{s_k^r}.

Here, 

s_k=\frac{1}{Pr_k}\int_{(x-\mu)\geq k\sigma}dx (f(x) + f(-x) )(x-\mu)^2 dx=\frac{1}{Pr_k}\int_{|x-\mu|\geq k\sigma}dx f(x){(x-\mu)}^2 dx\leq\frac{\sigma^2}{Pr_k}

Then we have

F(k)\geq\frac{Pr_k^r}{\sigma^{2r}}.

By the result of eq(1),

\frac{2m(k)}{(2r-1)Pr_k {(k\sigma)}^{2r-1}}\geq\frac{Pr_k^r}{\sigma^{2r}}   

Deforming this inequality, we have

Pr(|x-\mu|\geq k\sigma)\leq\frac{1}{k^2}{(\frac{2\sigma k^3}{2r-1}m(k) )}^{\frac{1}{r+1}}.

 

 Proof of Theorem 2

We put f(X)=p(i)U(X) if X\in [i,i+1)

U(X) is continuous uniform distribution.

Then,

\sigma_f^2=\sigma^2+\frac{1}{12}.

\sigma^2 is the variance of p(i), and \sigma_f^2 is the variance of f(X).

We put k\sigma=k_f \sigma_f, \alpha=\frac{\sigma_f^2}{\sigma^2}=1+\frac{1}{12\sigma^2}.

We have

Pr(|x-\mu|\geq k\sigma)\leq\frac{\alpha}{k^2}{(\frac{2\sigma k^3}{(2r-1)\alpha}m(k) )}^{\frac{1}{r+1}}.