趣味の研究

趣味の数学を公開しています。初めての方はaboutをご覧ください。

Mixture distribution(e.g. GMM) and wavelet transform

Can we represent the arbitrary function by mixture distribution?

I thought this problem by using the analogy of wavelet transform.


Definition.

Let p(x) be a probability density  function in  \mathrm{R^n}.

p_{a,b}(x)=\Pi_k|a_k|^{-1}p(\frac{x-b}{a})

for distribution function p(x) 

p(x) indicates p(x_1,x_2,\cdot\cdot\cdot,x_n).

In the following, we omitte the arguments of function in the same way.

We confirm p_{a,b} is probability density  function easily.


Proposition

Let p(x)\in L^2(\mathrm{R^n}) be probability density  function.

and C^2 class function such that

C_p=\int\Pi_k|\omega_k| |\hat{p}(\omega)|^2d^n\omega<+\infty


We can expand any probability density  function f(x)\in L^2(\mathrm{R^n}),

f(x)=\int_{\mathrm{R^n}}d^na\int_{\mathrm{R^n}}d^nbF(a,b)p_{a,b}(x)     (1)


We represent the expansion coefficients as below.

F(a,b)=-\frac{\Pi_k|a_k|}{C_p}\int[\Pi_k\frac{d^2}{dt_k^2}f(t)] p_{a,b}(t)d^nt        (2)

We ommitte the integral range in the case the integral range is \mathrm{R^n}.

Where, \hat{p}(\omega) is Fourier transform of p(x).

We have Gaussian mixture model if p(x) is normal distribution p.d.f.

 

Proof.

We can prove in the same way as continuous wavelet transform.([1]Theorem4.4)

The right integral 

q(x)=\int d^na\int d^nbF(a,b)p_{a,b}(x) in (1) can be rewritten as the sum of convolution.

q(x)=\int d^na\int d^nbF(a,b)\Pi_k |a_k|^{-1} p(\frac{x-b}{a})=\int d^na\Pi_k |a_k|^{-1} F(a,\cdot\cdot)\star p_a(x)     

\star indicates convolution, the "." indicates the variable over which the convolution is caliculated.

We define p_a(x)=p(\frac{x}{a}).

In the same way, we have

F(a,b)=-\frac{1}{C_p}[\Pi_k\frac{d^2}{dt_k^2}f]\star \tilde{p_a}(b)

 where, \tilde{p_a}(x)=p_a(-x).
Combining the results, 
q(x)=-\frac{1}{C_p}\int d^na \Pi_k|a_k|^{-1}[\Pi_k\frac{d^2}{dt_k^2}f]\star\tilde{p_a}\star p_a(x).
Using Fourier transform formula, we have
\hat{p_a}(\omega)=\Pi_k a_k\hat{p}(a\omega)
and 
\hat{\tilde{p_a}}(\omega)=\hat{p_a}(-\omega)=\overline{\hat{p_a}(\omega)}.
\overline{p} indicates the complex conjugate of p and we use p_a is a real function.
Fourier transform of q(x) is
\hat{q}(\omega)=\frac{\hat{f}(\omega)}{C_p}\int d^na \Pi_k|a_k|^{-1}a_k^2\omega_k^2 |\hat{p}(a\omega)|^2.

The change of variable a'_k=\omega_k a_k and using |\hat{p}(\omega)|^2=|\hat{p}(-\omega)|^2, we have
\hat{q}(\omega)=\hat{f}(\omega).        (3)
By inverse Fourier transform to (3), we prove the Proposition.

Reference.
[1] St´ephane Mallat., "A Wavelet Tour of Signal Processing"