趣味の研究

趣味の数学を公開しています。初めての方はaboutをご覧ください。

Collatz conjecture: The summary of stochastic analysis for collatz sequences

I have applied Brownian motin model with costant drift to collatz sequences, and derived some fornula.

We thnk about the collatz sequences of natural number n and stopping  times T_s.

"Stopping times" means operation times the collatz sequences arrives to 1.

 

Definition:

\log:natural logarithm

s=\frac{2}{\log3}\sim1.82

v=\alpha\frac{\log(\frac{4}{3})}{\log3}\sim0.262\alpha

 

\alpha is "1" in stochastic model, but almost "1.015 " from simulation result.

The probability density function of stopping times for  "n" is

p_{n}(T_{s})=\frac{2\sqrt{3+v}}{\sqrt{2\pi(2T_{s}+(s\log(n)))^3)}}exp(-\frac{(3s\log(n)-2vT_{s})^2}{2(3+v)(2T_{s}+slog(n))})

 

The expected value and variance of stopping times are 

E[T_{s}]=\frac{3s\log(n)}{2v}

V[T_{s}]=\frac{(3+v)^2slog(n)}{4v^3}

Additionaly, 

\frac{1}{n}\sum_{k=1}^{n}E_n[T_{s}]\sim\frac{3s}{2v}(\log(n)-1)

 

The maximum value of the collatz sequences for numbers included in [1,n]  is

M\sim n^{1+\frac{1}{2vs}}

 

The maximum stopping times for numbers included in [1,n]  is

T_M\sim\gamma s\log(n)-\frac{3\gamma}{2\beta}\log(\gamma)-\frac{\gamma}{2\beta}log(s\log(n)) eq(1)

Here,

\gamma=\frac{3}{v}+\frac{3+v}{sv^2}-\frac{1}{2}

\beta=\frac{v^2}{3+v}\gamma

 

About the comparison result of this model and actual caliculation, please see previous articles.