趣味の研究

趣味の数学を公開しています。初めての方はaboutをご覧ください。

Collatz conjecture : The stochastic model of collatz sequences

This is the same contents as previous articles written in Japanese.

This article is NOT the proof of collatz conjecture, I constructed stochastic model of stopping times using Brownian motin model with constant drift.

Stopping times means operation times until natural number n reaches 1.

 

We define f(n)=3n+1, g(n)=n/2.

If n is odd, the operation times increase by 2,  if n is even g(n) operation times increase 1.

We assume the probability that f(n) and g(n) are even or odd is \frac{1}{2}.

 

The variabe x=\log(n), "x" moves positive direction about \log(\frac{3}{2}) by probability 1/2, negative direction \log(2) by probability 1/2.

 

First, we think about time "t" that "x" reaches "0" for the first time(first passage time).

We multiply scale factor s=\frac{2}{\log(3)}

(Amount of positive direction movement)-(Amount of negative direction movement) =2 by f() or g() operation.

 

We define the rescaled variabeX(n)=s\log(n), and ommite "(n)" of X(n).

We approximate the movement of X as Brownian motion with constant drift.Because X drifts negative direction v=\frac{s}{2}(\log(2)-\log(\frac{3}{2})=\frac{\log(\frac{4}{3})}{\log(3)} , and moves \pm 1 between \Delta t=1.

We solve the first passage time of -X in Brownian motion with negative constant drift.

 

Second, we derive the relation between the first passage time time "t " and stopping times T_s.

 We define the movement times to positive direction as t_{+}, the negative movement times as t_{-}.

 

t_{-} + t_{+}=t

t_{-} - t_{+}+vt=X

 

We deform

t_{+}=\frac{(1+v)t-X}{2}

t_{-}=\frac{(1-v)t+X}{2}

 

t_{+} includes 2 steps, stopping times meet

T_{s}=2t_{+} + t_{-}=\frac{(3+v)t-X}{2}     eq.(1)

 

"t" confirms to inverse Gussian distribution, probability density function(PDF) is

p(t)=\frac{X}{(2πt^3)^\frac{1}{2}}exp(-\frac{(X-vt)^2}{2t}).

 

https://en.m.wikipedia.org/wiki/Inverse_Gaussian_distribution

The expected value and variance of inverse Gussian distribution are 

E[t]=\frac{X}{v}, V[t]=\frac{X}{v^3},  and by using epuation (1), we derive the formula,

E[T_{s}]=\frac{3X}{2v}

V[T_{s}]=\frac{(3+v)^2X}{4v^3}

 

\frac{1}{n}\sum_{k=1}^{n}E_n[T_{s}]\sim\frac{3s}{2v}(\frac{X}{s}-1)

 

 We substitue epuation (1) to PDF and deform measure

2dT_s=(3+v)dt

, the PDF of stopping times is

p_{X}(T_{s})=\frac{2(3+v)^{\frac{1}{2}}X}{(2\pi(2T_{s}+X)^3)^{\frac{1}{2}}}exp(-\frac{(3X-2vT_{s})^2}{2(3+v)(2T_{s}+X)})

 

This epuation means the probability that stopping times T_s is included in [T_{s}, T_{s} + dT_{s}] is

p_{X}(T_{s})dT_{s}.

 

We sum p_X from 1 to n, we derive the  frequency distribution of stopping times F(T_s) in [1,n]

 

F(T_{s}) = \sum_{k = 1}^{n}p_{X}(T_{s})\sim\frac{1}{s}\int_{0}^{X}p_x(T_{s})exp(\frac{x}{s})dx      eq.(2)

 

 Next,we derive the formula of the maximum value of stopping times in [1,n] by using the frequency distribution function.stopping times.

We define the maximum value of stopping times  as T_M.

 

In epuation (2), we convert u=\frac{x}{T_s}

 \frac{\sqrt{T_s(s+v)}}{\sqrt{2\pi}s}\int_{0}^{X/T_s} \frac{u}{(u+2)^{3/2}}exp(T_s(- \frac{(3u-2v)^2}{2(3+v)(u+2)}+ \frac{u}{s})     eq.(3)

 

First, we perform integration.

Considering E[T_s]=\frac{3X}{2v} and \frac{3}{2v}\sim 6, we find T_s is learger than X.

 

Then, we expand the primary term of "u" for integrand,

 

\frac{u}{2\sqrt(2)}\exp(-\frac{T_sv^2}{3+v})\exp(T_s(\frac{3v}{3+v}-\frac{v^2}{2(3+v)}+\frac{1}{s})u)

 

 We define \beta=\frac{3v}{3+v}+\frac{1}{s}-\frac{v^2}{2(3+v)}, we represent the integral,

\exp(-\frac{v^2T_s}{3+v})\exp(\beta X) (\frac{X}{T_s}\frac{1}{\beta T_s}+\frac{1}{(T_s\beta)^2})-\frac{1}{(T_s\beta)^2})

We consider about the case T_s is learger than O(10), and considering \beta\sim 1, we neglect 2nd and 3rd term.

 

Since the value of equation (3) at the maximum stopping times is O(1),

\frac{-v^2}{(3+v)}T_s+\beta X-\frac{1}{2}\log(T_s)+\log(\frac{T_S}{X})\sim0

We expand T_M at T_{M0}=\frac{(3+v)\beta X}{v^2}

-\frac{v^2}{3+v}\Delta T_s\sim\frac{1}{2}\log{T_{M0}}+\log(\frac{T_{M0}}{X})

 

Therefore,

T_M\sim\frac{3+v}{v^2}(\beta X-\frac{1}{2}\log(\frac{(3+v)\beta X}{v^2})-\log(\frac{(3+v)\beta}{v^2}))

\gamma=\frac{3+v}{v^2}\beta=\frac{3}{v}+\frac{3+v}{sv^2}-\frac{1}{2}

T_M\sim\gamma X-\frac{3\gamma}{2\beta}\log(\gamma)-\frac{\gamma}{2\beta}log(X)

 

Finaly, we consider about the maximum number of Collatz sequences in [1,n].

We define this number as M.

In the Brownian motion with negative constant drift, the probability arriving Y>X from X

 is

p_n(Y)=\exp(-2v(Y-X(n)))

We find the sum of p_k(Y) from 1 to n,  the sum result represents the expected number that reaches Y starting from X\in [1,n].

We deform the measure as

dn=s\frac{dX}{n}, then

\sum_{k=1}^{n}exp(-2v(Y-X(n))\sim\frac{1}{s}\int_{0}^{s\log(n)}exp(-2v(Y-X)+X/s)dX

\sim(2vs+1)exp(-2vY+(2vs+1)\log(n))

       eq(4)

If Y equals to the maximum number of Collatz sequences in [1,n], the result of eq(4) is O(1).

 

Considering Y=s\log(M), we derive the formula,

M\sim n^{1+\frac{1}{2vs}}