趣味の研究

趣味の数学を公開しています。初めての方はaboutをご覧ください。

Entropy inequalities

Definition.

Let h_p be Renyi entropy, 

h_p=\frac{1}{1-p}\log(\int_{\mathrm{R^d}}dx f(x)^p) for probability density function f(x)

h=h_1 is Shannon entropy.

 h_{\infty}=-\log\|f\|_{\infty} and \|f\|_{\infty}=\mathrm{ess} \sup f(x).

and

 N_p=\exp(\frac{2h_p}{d}).

 

We  derive some properties by assuming 

\det(K_X)\|f\|_{\infty}^2\leq C.

where K_x is covariant matrix and C is constant.

 

Theorem 1  ( joint entropy inequatliy)

Let X be probability variables in \mathrm{R^d} and p\geq 1.

Let \|f_k\|_{\infty}^2\det(K_{X})\leq C and \lambda_l be eigen values of K_X.

If \lambda_l\geq 1 for all l

h_p(X_1,X_2, \cdot\cdot\cdot, X_d)\geq\frac{1}{d}\sum_l h_p(X_l) -\frac{1}{2}\log(2\pi eC)

This inequaity is the extension of the inequality in discrete case

h_p(X_1,X_2, \cdot\cdot\cdot, X_d)\geq\frac{1}{d}\sum_l h_p(X_l).

 

Theorem 2 (d-dimentinal reverse EPI)

Let X_k be uncorrelated probability variables in \mathrm{R^d}.

Let \|f_k\|_{\infty}^2\det(K_{X_k})\leq C for all k, and let 

\lambda_{k;l} be eigen values of K_{X_k}.

 

If d = 1, 

 \sum_{k=1}^n {N_{p}(X_k)}\geq \frac{1}{2\pi eC}N_p(\sum_{k=1}^n X_k)

for p\geq 1.

If \lambda_{l,k}\geq 1 for all l,k and d\geq 2,

 \sum_{k=1}^n {N_{p}(X_k)}^d\geq \frac{1}{2\pi eC}N_p(\sum_{k=1}^n X_k)

for p\geq 1.

These are the reverse EPI.

 

Theorem 3.   (Renyi EPI for order p < 1)

Let X_k be independent probability variables in \mathrm{R^d}.

Let \|f_k\|_{\infty}^2\det(K_{X_k})\leq C for all k.

where, K_X is covariant matrix.

 Then,

for \frac{d}{d+2}\leq p<1

N_p(\sum_{k=1}^n X_k)\geq \frac{A_{p,d}}{eC^{\frac{1}{d}}}\sum_{k=1}^n N_{p}(X_k)

This inequality is the extension of Renyi EPI for p<1.

 where 

A_{p,d}=[{(\Gamma(\frac{1}{1-p}-\frac{d}{2})^{\frac{p}{1-p}}\Gamma(\frac{p}{1-p}) )}^{\frac{2}{d}}\pi]/[{(\Gamma(\frac{1}{1-p})^{\frac{p}{1-p}}\Gamma(\frac{p}{1-p}-\frac{d}{2}) )}^{\frac{2}{d}}{(\beta(1-p) )}]

\beta=\frac{1}{2p-d(1-p)}

 

Proposition 1.

h_p\geq -\log(\|f\|_{\infty})

N_p(X)\geq N_{\infty}(X)

This inequality holds either discrete case or continuous case.

We easily show these results by using f\leq\|f\|_{\infty}.

 

Proposition 2.(entropy upper bound)

For discrete or continuous d-dimentional probability variable X

\exp(2h_1(X) )\leq {(2\pi e)}^d\det(K_X).

 

Lemma 1. 

For continuous probability variable,

h_p\leq h_q if q\leq p.

 

Proof of Theorem 1.

Using Proposition2 and Lemma1, 

\sum_l \exp(2h_p(X_l) )\leq \sum_l\exp(2h_1(X_l) )\leq 2\pi e \sum_l K_{X,ll}=2\pi e \mathrm{Tr}(K_X)=2\pi e\sum_l \lambda_l                         eq(1)

By the asuumption \lambda_l\geq 1 and \|f_k\|_{\infty}^2\det(K_{X})\leq C,

\sum_l \lambda_l\leq d\Pi_l\lambda_l = d\det(K_X)\leq dC\|f\|_{\infty}^{-2}    eq(2)

By combining Proposition 1., eq(1) and eq(2), 

\sum_l \exp(2h_p(X_l) )\leq 2\pi eCd\exp(2h_p(X_1,X_2, \cdot\cdot\cdot, X_d) )

 Using Jensen's Inequality,

\frac{1}{d}\sum_l \exp(2h_p(X_l) )\geq \exp(\sum_l \frac{2h_p(X_l)}{d}).

We derive

\frac{1}{d}\sum_l h_p(X_l)\leq\frac{1}{2}\log(2\pi eC)+h_p(X_1,X_2, \cdot\cdot\cdot, X_d)

 

Proof of Theorem 2.

For Y=\sum_k X_k, using Proposition2.,

 N_p(Y)\leq N_1(Y)\leq 2\pi e\det(K_Y)^{\frac{1}{d}}

Using \frac{1}{d}\mathrm{Tr}A\geq {(\det A)}^\frac{1}{d}, and uncorrelated condition \mathrm{Tr}K_Y=\sum_k \mathrm{Tr}K_{X_k},

we derive

2\pi e\det(K_Y)^{\frac{1}{d}}\leq \frac{2\pi e}{d}\mathrm{Tr}K_Y=\frac{2\pi e}{d}\sum_k\mathrm{Tr}K_{X_k}=\frac{2\pi e}{d}\sum_k\sum_l\lambda_{k;l}

 

 By assumption \lambda_{k:l}\geq 1,

\sum_l\lambda_{k;l}\leq d\Pi_l\lambda_{k;l}=d\det(K_{X_k}).

By combining Proposition 1. and assumption \|f_k\|_{\infty}^2\det(K_{X_k})\leq C,

 N_p(Y)\leq 2\pi e\sum_k\det(K_{X_k})\leq 2\pi eC\sum_kN_{\infty}(X_k)^d\leq 2\pi eC\sum_k N_p(X_k)^d.

 

Proof of Theorem 3. 

Lemma 2.

For \frac{d}{d+2}\leq p<1,  

N_p(X)\leq A_{p,d}^{-1}\det(K_X)

 

We can derive this inequality from Proposition 1.3. in [4].

By Proposition 1.3. in [4], 

g(x)=B_p\int_{\mathrm{R^d}}d^dx\frac{1}{{(1+\beta(1-p)(\bf{x-\mu})^TK_x^{-1}(\bf{x-\mu }) )}^{\frac{1}{(1-p)}}} maximise Renyi entropy.

Using \int_{\mathrm{R^d}}d^dx=\frac{4\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})}\int_0^{\infty}dx x^{d-1} and the definition of beta function,

we derive

\exp(h_{p,g})=\|g\|_p^{\frac{p}{1-p}}=\det(K_X)[{(\Gamma(\frac{1}{1-p})\Gamma(\frac{p}{1-p}-\frac{d}{2}) )}{(\beta(1-p) )}^{\frac{d}{2}}]/[{(\Gamma(\frac{1}{1-p}-\frac{d}{2})\Gamma(\frac{p}{1-p}) )}\pi{^\frac{d}{2}}]=A_{p,d}^{-\frac{d}{2}}\det(K_X)

where

\beta=\frac{1}{2p-d(1-p)}.

For any probability variable X with covariant matrix K_X,

\exp(2h_{g,p})\geq \exp(2h_p(X) )=A_{p,d}^{-d}\det(K_X).

 

Lemma 3.

Let Y be Y=\sum_k X_k for independent probability variable X_k.

N_{\infty}(Y) \geq\frac{1}{e}\sum_{k=1}^n N_{\infty}(X_k)

This Lemma is shown as Theorem 2.14. in [1].

 

By combining the assumption and Lemma 2., 

N_p(X_k)\leq A_{p,d}^{-1}\det(K_{X_k})^{\frac{1}{d}} \leq A_{p,d}^{-1}C^{\frac{1}{d}}N_{\infty}(X_k).

 

By combining Lemma 3. and Proposition 1, 

 \sum_k N_p(X_k) \leq A_{p,d}^{-1}C^{\frac{1}{d}}\sum_k N_{\infty}(X_k) \leq A_{p,d}^{-1}C^{\frac{1}{d}}eN_{\infty}(Y)\leq A_{p,d}^{-1}C^{\frac{1}{d}}e N_p(Y) .

 

References.

[1] A.Marsiglietti, V.Kostina2, P.Xu. "A lower bound on the differential entropy of log-concave random vectors with applications"

[2] E.Ram, I.Sason. "On Renyi Entropy Power Inequalities".

[3] A. Marsiglietti, V.Kostina."A lower bound on the differential entropy of log-concave random vectors with applications"

[4]O.Johnson , C.Vignat ."Some results concerning maximum Rényi entropy distributions"