趣味の研究

趣味の数学を公開しています。初めての方はaboutをご覧ください。

The extension of Chebyshev inequality 2

Theorem

Let X \in \mathcal{R} be a log-concave random variable with expected value \mu and variable \sigma^2.

Let f(X) be a probability distribution function and f(x)\leq f(\mu) hold for all |x-\mu|\geq k\sigma.

Let f(x)x\rightarrow 0  as |x|\rightarrow \infty.

Let m(K) be m(k)=\max(f(\mu+k\sigma), f(\mu-k\sigma) ).

Then, for any r\geq \frac{1}{2},

 Pr(|x-\mu|\geq k\sigma)\leq \frac{1}{k^2}{[\frac{\sigma k^3 \{f(\mu+k\sigma) + f(\mu-k\sigma)\}}{\log(\frac{f(\mu)}{m(k)}) + 2r-1}]}^{\frac{1}{r+1}}.

For 0\leq r\leq \frac{1}{2}, if k satisfies the condition \log(\frac{f(\mu)}{m(k)}) + 2r-1\geq 0, the same inequality holds.

The simple examples are r=0,  r=\frac{1}{2}r=1.

We have

 Pr(|x-\mu|\geq k\sigma)\leq \frac{k\sigma \{f(\mu+k\sigma) + f(\mu-k\sigma)\}}{\log(\frac{f(\mu)}{em(k)})}.

 Pr(|x-\mu|\geq k\sigma)\leq [{\frac{\sigma \{f(\mu+k\sigma) + f(\mu-k\sigma)\}}{\log(\frac{f(\mu)}{m(k)})}]}^{\frac{2}{3}}.

 Pr(|x-\mu|\geq k\sigma)\leq [{\frac{\sigma \{f(\mu+k\sigma) + f(\mu-k\sigma)\}}{k\log(\frac{ef(\mu)}{m(k)})}]}^{\frac{1}{2}}.

  

Proof of Theorem 

By assumption of log-concavity, the inequality f(x+\lambda(y-x) )\geq f(x){(\frac{f(y)}{f(x)})}^{\lambda} follows on 0\leq \lambda\leq 1.

We subtract f(x) , devide by \lambda for this inequality and the limit \lambda\rightarrow 0, we have

(y-x)\frac{df(x)}{dx}\geq f(x)(\log(f(y) )-\log(f(x) ).

We put y=\mu, then we have

(\mu-x)\frac{df(x)}{dx}\geq f(x)(\log(f(\mu) )-\log(f(x) )           eq(1)

By this inequality, \frac{df(x)}{dx}\leq 0 holds for x which satisfies f(x)\leq f(\mu) and x-\mu\geq 0. So f(x) monotonically decreases on x-\mu\geq 0.

In the same way, we find f(x) monotonically increases on x-\mu\leq 0.

Then, we have \sup_{|x-\mu|\geq k\sigma} f(x)=\max(f(\mu+k\sigma), f(\mu-k\sigma) ).

We multiply |x-\mu|^{-2r} and integrate eq(1) on |x-\mu|\geq k\sigma, and apply integration by parts for LHS,

\int_{|x-\mu|\geq k\sigma}dx (\mu-x)|x-\mu|^{-2r}\frac{df(x)}{dx}=(k\sigma)^{1-2r}\{f(\mu+k\sigma) + f(\mu-k\sigma)\}+(1-2r)\int_{x-\mu\geq k\sigma}dx (x-\mu)^{2r} \{f(x) + f(-x) \}

For RHS, we have

\int_{|x-\mu|\geq k\sigma}dx |x-\mu|^{-2r}f(x)(\log(f(\mu) )-\log(f(x) )\geq (\log(f(\mu) )-\log(m(k) )\int_{x-\mu\geq k\sigma}dx (f(x) + f(-x) ){(x-\mu)}^{-2r}   

From these results, we have

(k\sigma)^{1-2r}\{f(\mu+k\sigma) + f(\mu-k\sigma)\} \geq (\log(f(\mu) )-\log(m(k) +2r-1)Pr_k\int_{x-\mu\geq k\sigma}dx \frac{f(x) + f(-x)}{Pr_k}{(x-\mu)}^{-2r}   eq(2)

Here, we put Pr_k=Pr(|x-\mu|\geq k\sigma).

By definition of Pr, \int_{(x-\mu)\geq k\sigma}\frac{f(x) + f(-x)}{Pr_k}=1 , and

\frac{1}{x^r} is convex function for x\geq 0,  and \int_{(x-\mu) \geq k\sigma }dx (x-\mu)^2 \frac{f(x)+f(-x)}{Pr_k}\geq {(k\sigma)}^2.

 

We can apply Jesen's inequality for the RHS term of eq(2).

\int_{(x-\mu)\geq k\sigma}dx\frac{f(x)+f(-x)}{Pr_k}\frac{1}{(x-\mu)^{2r}}\geq\frac{1}{s_k^r}.

We define as s_k=\int_{(x-\mu)\geq k\sigma}dx \frac{f(x)+f(-x)}{Pr_k}(x-\mu)^2 dx.

s_k satisfies 

s_k=\frac{1}{Pr_k}\int_{(x-\mu)\geq k\sigma}dx (f(x) + f(-x) )(x-\mu)^2 dx=\frac{1}{Pr_k}\int_{|x-\mu|\geq k\sigma}dx f(x){(x-\mu)}^2 dx\leq\frac{\sigma^2}{Pr_k}

Then we have

(k\sigma)^{1-2r}\{f(\mu+k\sigma) + f(\mu-k\sigma)\} \geq (\log(f(\mu) )-\log(m(k) +2r-1) \frac{Pr_k^{r+1}}{\sigma^{2r}}

If the condition  \log(\frac{f(\mu)}{m(k)}) + 2r-1\geq 0 holds, deforming this inequality, we have

 Pr(|x-\mu|\geq k\sigma)\leq \frac{1}{k^2}{(\frac{\sigma k^3 \{f(\mu+k\sigma) + f(\mu-k\sigma)\}}{\log(\frac{f(\mu)}{m(k)})+2r-1})}^{\frac{1}{r+1}}.